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J. Phys. A: Math. Gen. 13 (1980) 2823-2837. Printed in Great Britain 

Wavefunctions of a free electron in an external field and 
their application in intense field interactions: 11. Relativistic 
treatment 

J Bergou and S Varr6 
Central Research Institute for Physics, H-1525 Budapest, POB 49, Hungary 

Received.9 October 1979, in final form 19 February 1980 

Abstract. The behaviour of a relativistic free electron in an external plane wave field is 
analysed and a review of the existing solutions of the corresponding Dirac equation is 
presented. Completeness and orthogonality of the Volkov states are also proved. Based on 
the exact wavefunction obtained, a relativistic generalisation of the perturbation method 
proposed in the preceding paper is elaborated as a means of treating intense field problems 
in a covariant manner. 

1. Introduction 

In the preceding paper we have presented a review of the solutions of the non- 
relativistic free electron external field interaction problem (Bergou 1980, to be referred 
to as I). We have shown the equivalence of some at least superficially different solutions 
and proposed a perturbation method to treat scattering problems in the presence of an 
intense external field. In this method we used the complete set of the exact wavefunc- 
tions of the free electron in the field as a basis and treated the scattering potential as a 
perturbation. In the present paper we give a similar account of some existing solutions 
of the corresponding Dirac equation, prove their equivalence, orthogonality and 
completeness and, using this complete set of relativistic wavefunctions, we give a simple 
generalisation of the abovementioned perturbation method and determine the validity 
of the dipole approximation as well as the validity of the non-relativistic Born 
approximation in the present problem. 

The exact solution of the Dirac equation of a relativistic free electron in an 
electromagnetic plane wave field has long been known (Volkov 1935). This famous 
result has, since that time, been reproduced by several authors using different methods. 
It was shown, for example, that this problem can also be solved by purely algebraic 

methods (Beers and Nickle 1972). In another paper the so-called projection technique 
led to the same result (Becker and Mitter 1974). The Dirac equation, however, can also 
be solved without the direct use of the special assumptions and specific methods applied 
in these papers. By choosing an appropriate coordinate system, the system of the 
coupled differential equations for the spinor components can be reduced to an ordinary 
first-order differential equation for each component separately, if one uses the 
Majorana representation instead of the standard representation for the Dirac matrices. 
In this context it is interesting to mention another method (Alperin 1944). It is of 
course well known that in the ‘derivation’ of the Dirac equation the originally irrational 
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Hamiltonian (given by a square root expression) is rationalised by the usual Dirac 
matrices. The basic idea of Alperin’s paper was to exploit the symmetry of the problem 
by a suitable choice of coordinates, ensuring that both the rational and irrational parts 
show the required symmetry. Using the wavefunction thus obtained, he determined the 
scattering cross section of an arbitrarily intense classical EM field by an electron, using 
the method of the transition currents. The paper did not, however, attract much 
attention at that time, nor since. 

The next section and appendix 1 are devoted to the orthogonality and completeness 
problem of the Volkov states, this being the central problem in perturbation theoretical 
applications. In 9 3, the solution in the Majorana representation and rederivation of the 
Alperin solution are given, and their unitary equivalence with the Volkov solution is 
proved in appendix 2. In 9 4, it is shown how the multiphoton radiative corrections to 
the scattering of a free electron on a background potential due to the interaction with an 
intense mode of the EM field (laser) can be obtained by using the Volkov states. In the 
last section we deal with the connection of the present approach with the method 
introduced by I. The limits of validity of the non-relativistic dipole approximation, as 
well as other consequences of the relativistic generalisation, are also discussed. 

2. The Volkov states 

In an external electromagnetic field characterised by the A(x)  four-vector potential the 
relativistic wave equation of a spinor electron has the form? 

(id - €A - K ) $  = 0 (2.1) 

E = e /hc ,  K = mc/h (2.la) 

where 

(here c is the velocity of light, and h is Planck’s constant divided by 2~). We choose 
A(x)  as representing a transverse plane wave, i.e. 

A b )  =A(E), t = k . x ,  k . A  = k2=0. 
In the case of a general elliptically polarised wave 

A ( 0  = elAl(E) +e2A2(5),  

k . ei = 0,  e .  1 ’  e .= -S. .  I (i, j = 1, 2). 
(2.2a) 

The well known positive and negative frequency Volkov-type solutions of the above 
Dirac equation represent modulated plane waves, where the modulation depends only 
on 5. The plane wave itself can be parametrised by the four-momentum lying on the 
free mass shell (initial conditions are not taken into account): 

t The metric tensor g,,, has the components goo = -gii = 1 ( i  = 1,2,3) and g,, = 0 if f Y (p ,  v = 0, 1,2,3). 
Space-time coordinates are denoted by xLI, where { x ” }  = (cf, r ) .  Definition of the four-gradient is a = {a,,}, 
where a,, = a/ax”. Thescalar product of twofour-vectorsa and b is a .  b = gWvawbY = a,bY = aobo-ab. Dirac 
matrices satisfy the anticommutation relations yWyv + yYyw = 2g,,,. The y . a type scalar products are denoted 
by a dagger: y .  a = P  (cf Bjorken and Drell (1964); we shall use the metric and notation as well as 
representation of the Dirac matrices of this reference). 
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where 

(2.3b) 

One can follow the method of obtaining the solution in this covariant form in a paper by 
Brown and Kibble (1964). These Volkov states were applied by several authors to treat 
the interaction of a free electron with an intense optical mode (accounted for by the 
external field approximation). Interaction with another weak mode or some other weak 
potential can be taken into account by the usual perturbation theory. As in I, our 
method is perturbational in the background potential, but not in the photon number n. 
By this method absorption and emission from the intense mode can be directly 
computed up to any order in one step, while the usual Feynman-Dyson approach is 
based on the iterative expansion for the S operator, so higher values of n appear in 
higher orders of perturbation theory. 

For the E E ’ ( x )  matrices introduced in (2.3) one can easily verify that the following 
relationships hold (Ritus 1972): 

where 
0 t o  E = y E y .  

Orthogonality and completeness given in this form are not satisfactory for our purposes 
since the four-momentum components are not on the free mass shell. Therefore in the 
following treatment we give different orthogonality and completeness relations. For 
further investigation of the Volkov states it is convenient to use the light-like 
components originally introduced by Neville and Rohrlich (1971a, b; see also Becker 
and Mitter (1974)). This formalism is based on the fact that the vectors 

1 ri” =-(1, -n), C 1 
n F  =- k’ =-(1, n), 

oJ2 J2 J2 
e? = (0 ,  ei) (i = 1,2)  (2.4) 

form a complete orthonormal set in Minkowski space, therefore any ‘a ’  four-vector can 
be given by its light-like components in the following way: 

( 2 . 4 ~ )  a = nu, + n^a, + e l a l  + e2a2 

where 
A a, = n . a, a, = n . a, ai = - e i .  a (i = 1,2) .  (2.4b) 

Taking into account (2.4)-(2.46), the solution (2.3) can be brought to the form 

where 

U = x u ,  v =xu, Ai([) = ai (U) (i = 1,2)  ( 2 . 5 ~ )  
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(2.5b)  

(there is a summation over repeated indices from i = 1 to 2).  The states (2 .5)  (with 
normalisation factor ( 2 ~ ) - ” ’ ( ~ / p , ) ~ / ~ )  form an orthogonal set in the sense 

Here r = 1 , 2  are the spin indices and 6‘’’ denotes the two-dimensional Dirac delta 
function. The normalisation of the U:’ bispinors is, as usual, 

c(*) P UP (*) = * I ,  (2 .6a)  

To obtain the appropriate definition of completeness we deal first with the complete- 
ness of free plane waves. The solutions of the Dirac equation of a free particle are 

(2.7) 1/2 (*) e?Ap.x 
C P ~ : ) ( X )  = ( ~ T ) - ~ / ~ ( K / P ~ )  U,, 

The definition and the normalisation condition of the ub:’ bispinors are again given by 
equations (2 .3a)  and (2 .6a) .  The completeness relation of the set of positive and 
negative frequency solutions is 

Here we made use of the fact that 

(2 .8a)  

Relation (2 .8)  can be generalised in a covariant manner such that instead of the 
x o  = constant three-space we define completeness on a spacelike hyperplane deter- 
mined by an arbitrary timelike normal vector. For the symmetry of the external plane 
wave field the best choice is the U = constant null-plane. Therefore, in full analogy with 
(2 .8) ,  to establish completeness of the Volkov states on the null plane we investigate the 
expression 

where 
m I d3P’ = Iom dp, d2pi. 

-m 

(2 .9)  

(2 .9a)  

Before giving the completeness relationship of the Volkov states, we investigate the 
meaning of the operator defined by (2 .9) .  Using the (2.6) orthogonality relations it is 
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easy to prove the validity of the following projection properties: 

where 
a 

(2”lO) 

(2 .10~)  
--aD 

Introducing the bra and ket vector notation, the algebraic meaning of the relations 
(2.10) becomes even more apparent in the abstract state vector space: 

where 
e(,’, U )  = YOVt(U’, u)yO. ( 2 . 1 1 ~ )  

From (2.11) it is clear that V(U, U’) and e(,’, U )  represent propagators of the Volkov 
states and the Dirac-adjoint Volkov states, respectively. It is also clear that V(U, U )  and 
V(U, U )  are the projectors of the corresponding states. Other abstract algebraic 
properties of the Volkov states will be discussed in more detail in a subsequent paper. 

In the light of the (2.11) projection properties it seems natural to look for the 
completeness of the Volkov states in the form [ V + e],,,! = d3’(2 - 2’). Instead of this 
relationship, completeness of the Volkov states on a light-like hyperplane can be 
expressed by the formula 

[v(x, x ’ ) + ~ ’ v ~ ( x ’ ,  X ) ~ ~ I , = , ~ = S ( ~ ’ ( X ”  - X ” ) - ~ i K y , E ( O - O ’ ) S ( ’ ) ( X i - - X : ) .  (2.12) 

For the derivation of this result and definition of the function E(V) see appendix 1. 

can be represented as a (generalised) linear combination in terms of Volkov states. 
On the basis of (2.12) we have shown in equation (Al.11) that any bispinor function 

3. Connection with other solutions 

It is obvious from the preceding section that the problem of a free spinor electron 
interacting with an external plane wave field can be solved exactly in a covariant manner 
by using the light-like formalism. In this section we give two important examples where 
the Hamiltonian form of the corresponding Dirac equation, with appropriate co- 
ordinate systems, can also be solved exactly. 

Let us choose the y axis of our coordinate system as coinciding with the direction of 
the wavevector of the light field given by the A(x) vector potential, and polarisation 
parallel to the x axis. The Dirac equation of the problem in this coordinate system is 

where 

A, is an otherwise arbitrary function of 5. 
A, = Abl$/c), l$ = xo- y. ( 3 . 1 ~ )  
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We look for the solution of (3.1) again in the form of a plane wave modulated by the 
external field: 

+ = exp[-i(xopo - xp ,  - Y P ,  - zp,)l@(S). (3.2) 

Here @([) is a bispinor function for which, after substituting (3.2) into (3.1), we obtain 
the following ordinary differential equation: 

{ “ x [ P x  - 4. (511 + “ Y P Y  + a z p z  + P K  -Pol@ = (1 - “,)i d@/dS. (3.3) 

In the representation of the Dirac matrices used throughout the present paper this is a 
system of coupled equations, since ay on the RHS couples the derivatives of the different 
bispinor components of @. It is easy, however, to get rid of this difficulty in the 
Majorana representation (see appendix 2), where the (3.3) system of equations is 
decoupled: 

[ a x ( - p x  +~A,)+Pp~-cu,p,   ay^ -po]@’=(l-/?)id@’/d[. (3.4) 
Furthermore, it is also shown in appendix 2 that the solution of equation (3.4) has the 
form 

(3.5) 
where xb is a constant spinor, and J r ’  is defined by (2.3b). The agreement of the 
phases of the solution 4’ = @’([) and the transformed Volkov states, which one 
gets from equation (2.3) after the Majorana transformation, is obvious, while the proof 
of the equivalence of the bispinor amplitudes is also given in appendix 2. 

Another interesting solution of the present problem was given by Alperin (1944). 
In the following we shall repeat with some modification the original derivation of 
Alperin’s solution. We start from the relativistic energy-momentum formula 

(3.6) E/hc = [ ( P / h  - EA)’ + K 2]1’2 

@ O = [ ( ~ - E A ) ’ + K ’ ] ~ / ’ ,  Bo = i a/axo, = -i alar. (3.7) 

or, in operator form, 

In the special coordinate system used throughout in the preceding calculation it is more 
convenient to take the square root in a different way, namely 

5‘= xo- Y ,  

The matrices at = ii(ay +ia,) and a, =bi(ay -iax) satisfy the commutation relation 

a@Yn + a,“( = - 1 * (3.9) 
By using these matrices the Dirac equation corresponding to (3.8) has the following 
rational form: 

(Bx-cAx)+ = i ( ~ c B ~ + ~ q B ~  + a z P * z  +PK)$ .  (3.10) 
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The solution can be looked for again with the usual ansatz 

ICI = exP[i(xPx + zpz  - fSPe  - h 4 1 4  (8, 
P f  = P o +  PY, PTl = P o - P Y .  

(3.11) 

After substituting (3.11) into (3.10) we obtain a coupled system of equations for the 
components of 4 : 

-~[Px - €AX (6)141= -P&4 +P&3 K 4 1 ,  ( 3 . 1 2 ~ )  

-i[pX - ~A,(S)142 = ~ ~ 4 3  + 2i d43/d6 -PA + ~ 4 2 ,  (3.12 b) 

-~[Px -€AX([)]& = -PTl42+Pr4i - K43, ( 3 . 1 2 ~ )  

-i[pX - E A , ( S ) ] ~ ~ = P C ~ I  +2id41/dS-pr42-~44.  (3.12d) 

From ( 3 . 1 2 ~ )  and ( 3 . 1 2 ~ )  42 and 44 can be expressed by 41 and 43: 

42 = (~/PT~){~[(PX - €Ax) + i ~ l 4 3  + ~~411, (3 .13~)  

44= (~/P,){~[(PX - ~ A x ) - i ~ I 4 1  +pZ431, (3.136) 

and substituting these expressions into (3.126) and (3.12d) we obtain two similar 
uncoupled equations for 41 and 43: 

(3.14) 

The solution of (3.14), taking into account (A2.6b), will be 

41,3 = 41,~(0) exp( -i I J F ’ ( 6 )  dt), 41,3(0) =constant. ( 3 . 1 4 ~ )  

Through (3.13a)-(3.14~), all four components of 4 are known, and thus another 
solution of the Dirac equation is found. The function in the exponent of this wavefunc- 
tion coincides with exponents of the Volkov states and the state found in the Majorana 
representation. All we have to show is the equivalence of the bispinor part with the 
previous solutions. From (A2.5) 

( 3 . 1 5 ~ )  

(3.15b) 

Comparing the above relations with ( 3 . 1 3 ~ )  and (3.13b), we can immediately see that 
the same relation holds between as between (2) and &); therefore if we 
make the identifications ixk + q51 and,& + 43 the corresponding -iq; + 42 and cp; + 44 
identification must also hold. From this consideration the connection between and 
($) can be written in the following compact form: 

and 

(3.16) 

As the T matrix defined here is unitary, the Alperin-type solutions are equivalent with 
the solutions obtained in the Majorana representation, and due to the transitivity 
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property of the unitary transformations the three formally different wavefunctions 
considered so far are interrelated by unitary transformations and they are therefore 
equivalent from the physical point of view. 

4. An application of the Volkov states 

In the preceding paper the wavefunctions of a non-relativistic free electron moving in a 
homogeneous external field (dipole approximation) were used as the basis set of a 
perturbation method to calculate the cross section of the inverse as well as induced 
multiphoton bremsstrahlung process (Bergou 1980). In this section we work out an 
obvious generalisation of the method for the relativistic case and beyond dipole 
approximation by using the Volkov states as the basis set. Similar problems were 
touched on earlier (Denisov and Fedorov 1967, Brehme 1971) where the analytical and 
numerical behaviour of the relativistic cross section formulae of the scattering by a 
Coulomb background were investigated by different methods, and in a recent paper 
(Ehlotzky 1978) results beyond dipole approximation but using non-relativistic 
description were published. 

Consider the problem of the scattering of a relativistic free electron by a V ( r )  scalar 
background potential in the presence of an intense electromagnetic mode (laser light). 
The intense mode can be accounted for by the external field approximation and the 
corresponding Dirac equation reads (using light-like formalism) 

{y,i a, + y,i a, - yi[i ai - ~ a ~ ( u ) ] -  EX(U - U, xi) - K } $  = 0 (4.1) 
where 

a, = a/au, a, = a/av, a, = a/axi ( i  = 1,2)  ( 4 . 1 ~ )  

X(v - U ,  xi) = y o V ( r )  (4.1 b) 
is the background potential. 

The purpose of this section is to determine the transition amplitude and scattering 
cross section of the process $:’ + $2) caused by the scattering potential V ( r ) .  To this 
end we express the solution of equation (4.1) with the help of usual perturbation theory 
as a series in powers of V ( r ) ,  and we shall restrict ourselves to the linear term in V ( r ) .  
That is, we use the Born approximation, and the validity of the method is reduced to the 
question of the validity of this approximation. 

and 

We look for the solution in the form 

$ = $ b : ’ + $ k  (4.2) 
where q, r are determined by the parameters of the initial state and the correction term 
$k is a superposition of the ( 2 . 5 )  Volkov states taking into account the (A1. l l )  
expansion theorem: 

Upon substitution of (4.3) into (4.1) we obtain the equation 

(4.3a) 
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According to (Al. 12) 

yu b E’ = yuc E’ (4.3b) 
since y u  = 0. Taking into account this relationship equation (4.3~) can be further 
simplified to yield 

2 

(4.4) 

Here c:’ and cb;’ are scalar amplitudes to be determined. For the sake of simplicity we 
choose the initial conditions 

C E ’ ( U  U i )  = 0 for all p and r. (4.4~) 
In the spirit of the Born approximation we drop the second term on the RHS of equation 
(4.4) which contains the product of the correction term and the perturbing potential, 
thus giving higher-order corrections only. One should note, though, that it is not 
necessarily true that the neglected corrections are smaller than the term EY*~:’ which 
we keep. Thus, conditions for the validity of our method are the same as for the Born 
approximation. Then we take the scalar product of the remaining terms with $Fjr from 
the left and obtain the following ordinary differential equation for c;’(u, ui): 

i dcy!,/du = I du d2xi $ ~ ~ , ( u u x i ) e ~ ~ b : ’ ( u u x i ) .  (4.5) 

Here we have directly made use of the (2.6) orthogonality relations and that for 
arbitrary spin orientation fib+’y,ub+’ = (pu/~)zib+’ub+’ and fi?,,yuuL-’ = 0. Equation 
(4.5) can be integrated in a simple way, leading to 

(4.5a) 

The transition matrix element of the qr -* q’r’ process is connected with the cs!, (U, ui) 
amplitude in the following way: 

T f i = c F ! f ( u + a ,  u i + - a )  (4.6) 
or 

We perform the calculation for a circularly polarised wave 

AI([) = a cos 5, A&) = a sin 6. 
Then from (4.6) 

x V ( r )  exp{i[(qL -qn) . x + z sin(k. x -x)]}, 

(4.6~) 

(4.7) 

(4.8) 

( 4 . 8 ~ )  
sin x = a 2 / z ,  qa = q + (e2a2/2k.  q)k. 
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To evaluate the integral in (4.8) we use the well known Fourier expansion 

where J, denotes a Bessel function of integer order. Thus the transition matrix element 
represents an infinite sum of photon absorbed and photon emitted terms: 

m 

Tfi = T$),  T$ )  = -2.nit$"S(q:' -4: + n k o ) ,  (4.9) 

t p  = E V(q,  ) ( fi $;ft,!M,u g'), 
n=-m 

V ( Q , )  = [ d3r V ( r )  e-iQn' 
( 4 . 9 ~ )  

J 

Relation (4.9) expresses, in an explicit way, energy conservation; the index a stands for 
the fact that electron energies in the presence of the external field are different from 
those of a bare electron (see e.g. the last of the ( 4 . 8 ~ )  relations). In (4.9a) 

where 
e'+' - 1 '-I* C, = J, (z) e-inx, -2(el-ie2)=e . 

(4.10) 

( 4 . 1 0 ~ )  

After averaging over initial and summing up for final spin variables one obtains finally 
for the scattering cross section 

where 
2 dug '  K Ea x= ~GEV(Q,)I  , ~ = - ( v ~ = = 8 ~ 1 0 - ~ ~ h ~ I ) .  K 

(4.11) 

(4.1 l a )  

Here I is the intensity of light in W cm-' units, h is the wavelength in centimetres and Y 

is the dimensionless intensity parameter used by several authors. 
The parameters a,, P,, yn and 8, depend upon the four-momentum of the electron 

as well as on the frequency and polarisation of the light field and they are bounded 
functions of light intensity. Their analytical expression is rather complicated and does 
not give a better insight into the physical process involved, and therefore we omit them 
here. Equation (4.11) together with equation ( 4 . 1 1 ~ )  represents the main result of this 
section. In (4.11) the first term is just the generalisation of the result obtained by the 
non-relativistic dipole approximation for the nonlinear direct and inverse bremsstrah- 
lung, while the second term comes from the interaction of the spin momentum with the 
EM field and is exact in the sense that in all orders it is given by a fourth-order 
polynomial of the intensity parameter Y, only the coefficients being slowly dependent on 
the order of the process and intensity. 
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5. Discussion and summary 

As is well known, an intense mode of the electromagnetic field can be represented by a 
c-number plane wave field. The central problem of the semiclassical theory is, 
therefore, the solution of the wave equations of charged particles in such a surrounding. 
As an extension of previous work (Bergou 1980) on exact wavefunctions, in the present 
paper we have given a detailed study of the Volkov states from some special aspects. In 
§ 2, using the light-like formalism we have shown that the Volkov states parametrised 
by the four-momentum on the free mass-shell form a complete orthonormal set on the 
k . x = constant null-plane. The orthogonality and completeness of this kind are 
consequences of the special symmetry of the external plane wave field, i.e. of the 
dependence of the vector potential on the quantity k . x only. As several authors have 
made direct use of these solutions in perturbation theoretical calculations of different 
kinds, it seemed to us to be important to prove the completeness of this system and to 
examine in what sense they can be applied as a basis set. 

In the next section we gave two simple methods for the solutions of the Dirac 
equation under consideration. Each of the methods was based on the fact that, with 
appropriate choice of the coordinate system, the coupled system of equations for the 
bispinor components can be decoupled into ordinary differential equations for each 
component separately in a suitable representation for the Dirac matrices. This was first 
performed in the Majorana representation and another solution was found by a suitable 
rationalisation of the relativistic energy-momentum formula. We note here that 
neither of these two methods of solution required the solution of a second-order 
equation as was done in the original derivation by Volkov. We have shown that 
the bispinor amplitudes of the solutions found in this way are related to the 
Volkov amplitudes through unitary transformations (the agreement of phases is 
obvious) and consequently they are equivalent to each other from the physical 
point of view. 

In the last section the use of the Volkov states was demonstrated in the derivation of 
the nonlinear inverse and induced bremsstrahlung scattering cross section. The 
expression obtained can be considered as a relativistic generalisation of the results 
obtained in the non-relativistic dipole approximation. Scattering is elastic with respect 
to the background potential and inelastic with respect to the external field. This last 
property is expressed by the Bessel functions, while corrections to this result were found 
from two different origins. The first is what one would expect when the non-relativistic 
dipole approximation is dropped (relativistic non-dipole part) and the second comes 
from the relativistic interaction of a spin momentum with an external field. It is 
interesting to note at this point that this second correction is given by a similar finite 
(fourth-order) polynomial of the intensity parameter in all orders, the coefficients 
of the polynomial being only slowly dependent on the order. From here we may 
conclude that in a sufficiently intense external field, relativistic effects may become 
important. 

Appendix 1 

In order to prove equation (2.12), we start with the definition (2.9) of the Volkov 
propagator. We attach the normalisation constants ( 2 ~ ) - ~ / * ( ~ / p , ) ' / ~  to the Volkov 
states (2.3) and express the particular value V(x,  ~ ' ) l , , = ~ ,  on the U = constant hyper- 
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plane as 

where (f-f’)p”= ( v - v ’ ) p u - ( x i - x : ) p i .  
yw, and by using the 

transversality condition k . A = 0 we have y0(Kfityo = AK, Using this and the addi- 
tion theorem (2.8~) for the dyadic sum of the free bispinors, and changing the 
integration variable from p” to -8 in the negative frequency term of ( A l . l ) ,  we obtain 
for V ( X ,  x’)l,=,,,  

0 t o =  In the representation used throughout this paper y y p y  

Similarly, for the Dirac adjoint propagator, defined by equation (2.1 l a ) ,  we have 

V(x ,  x‘) lu=u’ = V(X‘, X ) l , = , , ’  

Taking into account @y.. + y& = 2pu, we obtain the expression for the sum of (A1.2) and 
(A1.31, 

[V(X, x ’ )  = V(x ,  X ’ ) ] , , = , J  = S‘3’(X”-f’)-4iKyuE(v - - V ’ ) d 2 ) ( X i  - x i )  
(Al.4) 

where 

€(U) = - i im GdPu 
T -m 

(A1.5) 

(see also Neville and Rohrlich 1971a, appendix 11). 

expanded in terms of the Volkov states in the following way: 
By (A1.4) and the definition of V(x,x’)  an arbitrary bispinor $ can now be 

where 

and 

J -m 

(A1.6) 

(Al.7) 
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If in the last term of the RHS in (A1.6) $(uu ’x i )  is regarded as being expressed from 
(A1.6), then $(uuxi)  takes the form 

.m 

(A1.9) 

Here we made use of the fact that yu is nilpotent, or else 7; = 0. The Volkov states 
$F ’ (uu ’x i )  depend on U ’  only through the exponential factors eTiu’pu. Hence, the 
integrals in equation (A1.9) involving E(U - U’) can be simply evaluated, if we take into 
account equation (A1 S), giving 

m 

I-m 
do’ E(U - U ’ ) $ E ’ ( U U ’ X i )  = * i ( 2 / p & ~ ’ ( u u x i ) .  

Introducing this last expression into (A1.9), we obtain 

(A 1.1 0) 

where 

b b:’ (U ) = cb:’ (U ) + yv d b:’ (U ) T KY, (c b:’ (U ) / p v  1. (A1.12) 

Expression (Al .  11) can be regarded as the desired expansion in terms of the Volkov 
states and it is fully satisfactory for the purposes of any practical application (cf equation 
(4.3)). 

Appendix 2 

In the standard representation used throughout the present paper, the Dirac matrices 
(Y,,~,~ and p have the form 

(A2.1) 

where ux,y,z are 2 x 2 Pauli matrices and 0 and 1 are 2 x 2 zero and unity matrices. The 
corresponding y matrices are y’,2*3 = yx,y,z = pax,y,z, yo = p. In equation (3.3) of 0 3 the 
matrix (1 - ay) on the RHS has non-diagonal elements as well, and the component 
derivatives of Q, are coupled. For this reason, it is convenient to transform equation 
(3.3) to a form where the matrix coefficient on the RHS is diagonal. Therefore we 
introduce the self-adjoint unitary matrix (Majorana 1937) 

(A2.2) -1 + 
u M =  ( 1 / d 5 ) ( a y  U M  = U M  =UMVI.  

(A2.3) 
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With the aid of these relations the transformed equation corresponding to equation 
(3 .3 )  reads in the Majorana representation as 

[ a x ( - p x  + ~ A , ) + P p , - a ~ p ~  + a , ~  -pol@’= (l-P)id@’/dS ( 3 . 4 )  

where 

@’ = U&.. (A2.4) 

If we introduce cp’ and x’, the upper and lower components of @‘ respectively, (3 .4 )  gives 
a simple algebraic relation between cp’ and x’: 

(A2.5) cp‘ = ( P o - P , ) - ’ [ ( - P x  + EAxbx - p z u z  + K U Y I X ’ .  

If (A2.5) is substituted into the lower component equation of (3 .4)  we obtain 

where 
2i dX’/d6 = {(1/prr)[(px -EAX)~+PI + K ~ I - P O X ’  (A2.6) 

Prr = P o - P Y ,  PE = P o  +PY. ( A 2 . 6 ~ )  

Without loss of generality we can assume that the parameter p satisfies the usual free 
mass-shell relationship 

P E = P ;  + P ;  + P I  + K ,  PrrPs=P:+PI+K2. (A2.66) 

Then from (A2.6) 

x‘ = exp( i I 4 ( 6 )  d6)xb. 
(A2.7) 

Here xb is a constant spinor. The final form of the solution of (3 .4 )  using (A2.5) then 
becomes 

I,([) = (1/2pv)[2~Ax(6)p, -~‘A:(6)1= -JF’ (5 ) .  

The exponent of (3 .5)  agrees with that of the Volkov states, while the proof of the 
equivalence of the bispinor amplitudes will be given in what follows. In the special 
coordinate system introduced in the above calculation the positive-frequency Volkov 
bispinor reads 

In the Majorana representation this becomes 

U:)’ = [l +(1+P)ax(~A,/2prr)]ub (A2.9) 

where now U b satisfies the transformed free energy eigenvalue-equation 

Equation (A2.9) written out explicitly reads now 

(A2.10) 
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On the other hand, from ( A 2 . 9 ~ )  

CPA = ( ~ / & ) ( - P x ~ x  - P z ~ z  i- K V . y ) X & .  (A2.11) 

Substituting (A2.11) into (A2.10) and comparing the result with (3.5), one can see that 
the solution given here is equivalent to the Volkov solution. 
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